Remember that we have VVT and MDS with a variable displacement oil pump with an actuator set up.
A variable displacement oil pump system is more than just a pump.
Six major components play an active role in calculating the performance of the pump.
Our HEMI Engines know what the viscosity and flow characteristics should be because that information has been programmed into the ECM. They know if someone used 10W-30 instead of 5W-20 because it affects how the pump performs.
The wrong oil can set off codes because the ECM knows what the oil pressure should be for a given engine speed and coolant temperature. If the numbers do not match, it will set a code and put the engine into a reduced power mode.
Almost every variable displacement oil pump application is mounted on the crankshaft.
Variable displacement pumps are “gerotor” designs. Gerotor pumps have trochoid gears that allow for smooth operation, low noise and excellent suction. The centrically seated drive gear drives an external eccentrically seated annular gear. The result of which is cavities inside the pump compress and enlarge to create the suction and feed effect.
The inner rotor sits on the crankshaft and drives the outer rotor. Since the inner and outer rotors have different rotating axes, more space is created on the suction side due to the rotating motion. The oil is drawn in and transported to the pressure side. On the pressure side, the space between the gears’ teeth becomes smaller again, and oil is forced into the oil circuit under pressure.
View attachment 87925
A variable displacement oil pump changes the rotating axis of the outer gear. To achieve this, the gears of the inner rotor are replaced with variable-length vanes. The outer gear pivots on an axis; opposite the pivot is an electronic actuator. On mechanical versions, a spring replaces the actuator and the opposite side of the housing has oil or a piston that pushes against the spring to regulate pressure.
Most variable displacement oil pumps use an electric solenoid to change the axis and eccentricity of the pump housing, and position is determined by the ECM. Changing the geometry of the housing changes the amount of pressure and volume of the pump. Most actuators use a pulse width modulated signal to control the position of the actuator, and some scan tools can display the PID for the actuator position.
Oil pressure sensors on most variable displacement oil pump systems are positioned in the oil galley between the main bearings and the head. Pressure sensors measure the overall pressure in the system, not just the pressure produced by the pump. If there are any problems like restrictions or internal leaks, the sensors will show incorrect readings, to solve these problems before replacing the pump.
On most vehicles, the oil temperature is calculated using various sensor inputs, not a direct sensor. The engine oil temperature calculation is a range of values, with a low value indicating when the oil temperature is low and a high value when the oil temperature is high. On vehicles with variable displacement oil pumps, oil temperature plays a critical role in calculating the actuator’s position during cold start up.
The ECM looks at data including engine coolant temperature, engine load, calculated oil temperature and other monitors to determine the position of the oil pump actuator and oil pressure. If the system detects an overheating condition or a problem with one or more of the inputs, it may put the system into a reduced power mode to prevent damage.
Depending on the demand of the engine and the pressure readings this will also change with the RPM's of the engine.